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Abstract: This paper discusses a number of technical issues in a new area of research in control systems, namely, quantized
feedback control and estimation. This area is motivated by the increasing need of incorporating communication networks in a
control system. In such a framework, feedback information needs to be transmitted over a digital network, which results in a
number of new challenges for control design. The focus of this article is on how to design quantizers for the purposes of control
design and state estimation.
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1 INTRODUCTION

The concept of feedback is the heart of the modern control
theory. We use feedback to validate system models, predict
system behaviors and drive controllers to deliver desired per-
formances. Control designs rely heavily on the availability
and accuracy of the feedback signal. Even in the case when
feedback signals contain various types of noises, we typi-
cally require precise noise models, either deterministic or
stochastic, to be available in design and analysis. Naturally,
when additional errors occur in the feedback signal, the ex-
pected performance can no longer be guaranteed.

Quantization is a common source of errors which may cause
the system performance to deteriorate. To simplify the de-
sign and analysis processes, quantization errors are often ig-
nored or treated using simple noise models. This approach
is valid only when the quantization errors are insignificant.
However, there are two important scenarios where such
treatment may be inadequate. One scenario is when the sys-
tem requires high performance while high-precision sensors
may not be available. For example, a high-resolution opti-
cal encoder may be too expensive. Another scenario is in
the so-called networked control when the measured signal
must be transmitted over a digital communication link with
a restrictive data rate. A wireless sensor network is a typical
example of this kind, where only low data rates are possible
due to power and bandwidth constraints.

There are two types of research problems for control and es-
timation with regard to quantization errors. The first type
assumes that that the quantizer is given and the problem is to
work out the best strategy to reduce the impact of the quan-
tization error. For example, a angular position of a rotational
motor may be measured by a given optical encoder which
has a fixed resolution. We must design an optimal controller
or optimal estimator based on the given quantized signal.
The second type allows the quantizer to be designed in con-
junction with a controller or estimator. This type of problem
arises in networked control where the measured signal can
be regarded as a high-precision signal but it must be quan-
tized for digital transmission. In this case, we are allowed
to choose the rules for quantization. This paper will discuss
both types of problems.

2 LINEAR QUANTIZATION

Quantizers can be either static or dynamic. We will discuss
dynamic quantizers in Section 5. A static quantizer is a non-
linear function described by

v = Q(y) (1)

where y ∈ R is the input signal and v is the output signal
taking values in

V = {±μi : i = 0,±1,±2, · · · }, (2)

Linear quantizers are very common and they have

Q(y) = iε + d, if iε � y < (i + 1)ε, i = 0,±1, . . . (3)

where ε is the quantization step size and d is the offset. It is
clear that μi = iε + d in (2). We assume d = ε/2, which
makes Q(y) an even function. In practice, the quantized out-
put is saturated to yield a finite-level quantizer.
Linear quantizers are common because of its simplicity in
construction and the fact that the quantizer can be modeled
as a linear mapping with an additive quantization noise, i.e.,

v = y + Δ(y) (4)

with Δ(y) = Q(y)−y which has the property that |Δ(y)| �

ε/2.
The performance of a quantizer depends on how “small” the
quantization noise is. This, in turn, depends on the type of
input signal to the quantizer. The following result shows that
linear quantization is optimal when the input signal is uni-
formly distributed in a given interval and the quantization
noise is measured in average power (mean squares).

Theorem 2.1 Suppose y is a scalar random noise with uni-
form distribution in [−1, 1) and v = Q(y) is an N -level
quantizer with an even N . Let the quantization noise be
measured by

E = E{Δ(y)2} (5)

where E(·) is the expectation operator. Then, the optimal
structure for Q(·) which minimizes E is a linear quantizer

Q(y) = iε + d, if iε � y < (i + 1)ε, y ∈ [−1, 1) (6)

with ε = 2/N and d = ε/2.
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Proof: Let the quantization intervals be given by
[αk, αk+1), k = 0, 1, . . . , N − 1 with α0 = −1, αN = 1
and αk < αk+1 for all 0 � k < N . Our first step is to show
that if y falls into [αk, αk+1), the optimal Q(y) should take
the midpoint, i.e., Q(y) = (αk +αk+1)/2. Indeed, denoting
Q(y) by vk and the probability density by p = 1/2, the
contribution of such y to E in (5) is given by

Ek =

∫αk+1

αk

p(y− vk)2dy =
p

3
[(αk+1 − vk)3− (αk − vk)3]

Differentiating Ek with respect to vk and setting the deriva-
tive to zero yields vk = (αk + αk+1)/2, which gives the
minimum

Ek =
p

12
(αk+1 − αk)3

Next, we prove by contradiction that the quantization inter-
vals must be equal in length for E to reach minimum. In-
deed, if this is not the case, then there must be at least two
adjacent intervals, say [αk, αk+1) and [αk+1, αk+2), which
are not equal in length, we argue that the sum of Ek and
Ek+1 can be reduced by shifting αk+1 to the midpoint of αk

and αk+2. More precisely,

Ek + Ek+1 =
p

12
[(αk+1 − αk)3 + (αk+2 − αk+1)

3

It is again straightforward that minimizing the above with
respect to αk+1 yields αk+1 = (αk + αk+2)/2. Since E =
E0 + E1 + . . . + EN−1, the above leads to a contradiction,
which implies that the quantization intervals must be equal in
length for E to reach minimum. Finally, ε = 2/N and d = ε
follow from the size of each interval and that the quantized
value is the midpoint of the interval.

3 LOGARITHMIC QUANTIZATION

Although linear quantizers have a number of advantages as
explained above, it is not an ideal choice in many applica-
tions. In this section, we consider several cases where a log-
arithmic quantizer is more appropriate. A logarithmic quan-
tizer is described by

V = {μi = ρiμ0 : i = 0,±1,±2, · · · }∪{0}, μ0 > 0, (7)

where ρ ∈ (0, 1) and

Q(y)=

⎧⎨
⎩

ρiμ0, if 1
1+δ ρiμ0 < y �

1
1−δ ρiμ0,

0, if y = 0,
−Q(−y), if y < 0,

(8)

where

δ =
1 − ρ

1 + ρ
. (9)

A pictorial representation is given in Fig. 1. The description
above is for an infinite-level logarithmic quantizer. In prac-
tice, it is truncated when the input is too large (by a saturator)
or too small (by a dead zone) in magnitude.
The first case where logarithmic quantization is superior to
linear quantization is in quantized feedback control where
the objective is to drive the output or the state to the ori-
gin but the control signal or measurement signal need to be
quantized [1, 2]. This arises in stabilization, tracking and
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Fig. 1 Logarithmic Quantizer

disturbance attenuation. The reason is that logarithmic quan-
tization gives a multiplicative quantization error, which re-
duces as the input signal becomes small. As a tradeoff, the
quantization error becomes large when the input signal is
large, but this does not create problems.
The second case where logarithmic quantization is superior
to linear quantization is in quantized state estimation where
the state of a system needs to be estimated using quantized
information [3]. If the measured signal is quantized directly,
logarithmic quantization may not be appropriate because the
measurement may be persistently large. However, one may
quantize the estimation error instead. In doing so, logarith-
mic quantization is better because we want a small quantiza-
tion error when the estimation error becomes small and we
can tolerate a large quantization error when the estimation
error is large.
Another case where logarithmic quantization is advanta-
geous is when the signal to be quantized already has a mul-
tiplicative noise. Many sensors have the feature that mea-
surement errors are specified using a relative error. For ex-
ample, positions are often measured by range (distance) and
most range sensors have accuracies specified by relative er-
rors. Recall that logarithmic quantization also introduces a
multiplicative error. When it is combined with a multiplica-
tive noise, it is simply magnified without changing the noise
structure.
It is interesting to note that most control and estimation set-
tings deal with additive noises. We note here that this is
indeed done mainly for mathematical convenience because
multiplicative noises are somewhat more difficult to deal
with; see [4].

3.1 Quantized Feedback Control

Consider the following system:

x(k + 1) = Ax(k) + Bu(k),

y(k) = Cx(k), (10)

where x(k) ∈ R
n is the state, u(k) ∈ R is the control input,

y(k) ∈ R is the measured output, A ∈ R
n×n, B ∈ R

n×1

and C ∈ R
1×n are given. We will denote the transfer func-

tion from u(k) to y(k) by G(z). We assume that A is unsta-
ble and (A, B, C) is a minimal realization.
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The quantized feedback control problem is is depicted in
Fig. 2, i.e., is to design a feedback quantizer

v(k) = Q(y(k)), (11)

and a feedback controller of the form

x̂(k + 1) = Acx̂(k) + Bcv(k), x̂(0) = 0,

u(k) = Ccx̂(k) + Dcv(k), (12)

with x̂(k) ∈ R
n, such that the closed-loop system is stable

and that the so-called quantization density [1] is coarsest.
The quantization density of Q(·) is defined as follows:

ηQ = lim sup
ε→0

#g[ε]

− ln ε
, (13)

where #g[ε] denotes the number of quantization levels in the
interval [ε, 1/ε].

�u(k)

v(k)

y(k)System �

�

Q(·)

Controller

�

Fig. 2 Quantized Feedback Control

It was shown in [2] that the optimal quantizer structure for
the quadratic stabilization of (10) is given by logarithmic
quantization. Moreover, under quadratic stabilization, quan-
tized feedback control is equivalent to robust control with
sector bounded uncertainty, and the coarsest quantization
density (which is equivalent to the smallest ρ) can be found
by standard H∞ optimization as detailed below.

Theorem 3.1 Consider the system (10). For a given quan-
tization density ρ > 0, the system is quadratically stabiliz-
able via a quantized controller (11) if and only if the follow-
ing auxiliary system:

x(k + 1) = Ax(k) + Bu(k)

v(k) = (1 + Δ)Cx(k), |Δ| � δ (14)

is quadratically stabilizable via:

xc(k + 1) = Acxc(k) + Bcv(k)
u(k) = Ccxc(k) + Dcv(k)

(15)

where δ, which is the sector bound produced by the quanti-
zation error, and ρ are related by (8).
The largest sector bound δsup (which gives ρinf ) is given by

δsup = ( inf
H(z)

‖Ḡc(z)‖∞)−1 (16)

where Ḡc(z) = (1 − H(z)G(z))−1H(z)G(z) and H(z) =
Dc + Cc(zI − Ac)

−1Bc.

The result builds a fundamental bridge between quantized
feedback control and robust control, paving way for a lot of
further research on networked control.

3.2 Quantized State Estimation

Consider the following linear system:

x(k + 1) = Ax(k) + Bw(k), x(0) = x0

y(k) = Cx(k) + v(k) (17)

where w(k) ∈ R
m is the process noise, v(k) ∈ R is the

measurement noise. It is assumed that x0 ∈ R
n is a random

variable with mean x̄0 and covariance Σ0, and w and v are
uncorrelated zero-mean white noises with covariances Σw

and Σv, respectively, and they are uncorrelated with x0.
We study the problem of state estimation using quan-
tized measurement transmitted over a digital communication
channel with a limited data rate. It is desirable to know how
to quantize the measured signal so that good state estimation
can be achieved using limited information.

�w(k)
v(k)

y(k)
System

�
+� �

� Quantizer � Channel � Estimator �x̂(k)

Fig. 3 Quantized State Estimation

The quantized estimator is shown in Fig. 3. Instead of quan-
tizing the measured signal directly, we choose to quantize
the prediction error of the estimator. The estimator is chosen
to be

x̂(k + 1) = Ax̂(k) + LQ(y(k) − ŷ(k)), x̂(0) = x̄0

ŷ(k) = Cx̂(k)) (18)

where x̂(k) ∈ R
n is the estimate of x(k), ŷ(k) ∈ R is the

estimate of y(k) based on x̂(k), Q(·) is the quantizer, and L
is the estimator gain.
Note in the above that state estimation is constructed only us-
ing the quantized prediction error. Therefore, under the ideal
channel assumption, both sides of the channel can construct
the same estimate using the quantized prediction error. In
particular, the construction of x̂(k) on the transmission side
does not require the estimated state to be transmitted back
from the receiver side.
A logarithmic quantizer is used. Defining the estimation er-
ror

e(k) = x(k) − x̂(k)

and its covariance matrix

E(k) = E{e(k)eT (k)}

the aim is to design both the filter gain L and the quantizer
so that the trace of the asymptotic E(k), i.e., E = limk→∞,
is to be minimized. Details can be found in [3].
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We now demonstrate quantized state estimation by an exam-
ple. The system model is given by (17) with

A =

⎡
⎢⎢⎢⎣

2.4744 −2.811 1.7038 −.5444 .0723
1 0 0 0 0
0 1 0 0 0
0 01 0 0
0 0 0 1 0

⎤
⎥⎥⎥⎦;

BT = [1 0 0 0 0];

C = [0.245 0.236 0.384 0.146 0.035] (19)

Σw = 1 and Σv = 1/16. The range of δ for the tests is
chosen to be [0, 0.3]. For each δ, we try two estimator gains
L, one taken as the Kalman gain designed by ignoring the
quantization error and one being the robust gain computed
by treating the quantization error as a multiplicative noise.
Fig. 4 shows the simulated values of Tr(E). Also shown in
the figure are the estimates of Tr(E) which we can ignore for
this paper. We have two observations: 1) As the quantization
becomes coarse (ρ becomes small or δ becomes large), the
estimation error increases; 2) the robust gain outperforms
the Kalman gain more significantly when the quantization
becomes coarse.
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Fig. 4 Infinite-level Logarithmic Quantization

When the quantizer is truncated to a finite-level one, addi-
tional estimation error arises. In this case, apart from the
ρ, the parameter μ0 in the quantizer needs to be designed
as well. As a result, with about 4 ∼ 5 bits of quantization,
the quantized estimator has its estimation error variance only
marginally larger than in the case without quantization. The
details on the design of ρ and μ0 can be found in [3]. Fig. 5
shows the result of estimation error vs. the number of quan-
tization bits Nb.

4 NONLINEAR QUANTIZATION

Logarithmic quantization is a special type of nonlinear quan-
tization. In this section, we consider a case when the input
signal to the quantizer has a given Gaussian distribution and
present an optimal nonlinear quantizer.
Consider an N -level quantizer acting on a random variable
with Gaussian distribution N (0, 1). An N -level quantizer is
defined as

y = Q(x) = yi, if xi−1 < x � xi (20)
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Fig. 5 16-level Quantization

where x0 < x1 < . . . < xN with x0 = −∞ and xN =
∞. We will call [xi−1, xi) a quantization interval and yi the
associated quantization level.
Our objective is to choose the quantization intervals and
quantization levels so that the quantization error has the min-
imum variance. That is, we want to minimize

Σ = E(x − Q(x))2 =
1√
2π

∫∞

−∞
(x − Q(x))2e−x2/2dx

(21)
We can rewrite Σ as

Σ =

N∑
i=1

Σi =

N∑
i=1

1√
2π

∫xi

xi−1

(x − yi)
2e−x2/2dx (22)

Lemma 4.1 Defining

F (α, β, γ) =

∫γ

a

(x − α)2e−x2/2dx +

∫ b

γ

(x − β)2e−x2/2dx

(23)
for some fixed a and b with 0 � a < b. Then, F (α, β, γ) is
minimized when

α = f(a, γ);

β = f(γ, b)

γ =
1

2
(f(a, γ) + f(γ, b)) (24)

where

f(x, y) =
e−x2/2 − e−y2

√
2π(Q(x) − Q(y))

(25)

with

Q(x) =
1√
2π

∫∞

x

e−x2/2dx (26)

Moreover, (24) has a unique solution and can be numerically
solved by iterating

γk+1 =
1

2
(f(a, γk) + f(γk, b)), γ0 =

1

2
(a + b) (27)

i.e., γ = limk→∞ γk.
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Proof: Partially differentially F (α, β, γ) with respect to α
and setting it to zero gives

∂

∂α
F (α, β, γ)

=
2√
2π

∫γ

a

(α − x)e−x2/2dx

= 2α(Q(a) − Q(γ)) − 2√
2π

(e−a2/2 − e−γ2/2) = 0

which gives the solution to α. The solution to β is given
similarly by partially differentiating F (α, β, γ) with respect
to β. Now, partially differentially F (α, β, γ) with respect to
γ and setting it to zero gives

∂

∂γ
F (α, β, γ) =

1√
2π

{(γ − α)2 − (γ − β)2)e−γ2/2 = 0

which gives γ = (α + β)/2.
Next, we show that (24) has a unique solution and it is a
minimizer. We have f(y, x) = f(x, y),

lim
y→x

f(x, y) = lim
y→x

d
dy (e−x2/2 − e−y2/2)√
2π d

dy (Q(x) − Q(y))

= lim
y→x

ye−y2/2

e−y2/2
= x

and

d

dy
f(x, y) =

1√
2π

∫y

x

(y − t)e−t2/2dt

· e−y2/2

√
2π(Q(x) − Q(y))2

(28)

which is positive for y > x. It follows that

a < f(a, γ) < f(γ, b) < b, for a < γ < b (29)

Define

g(γ) = γ − 1

2
(f(a, γ) + f(γ, b))

Then,

g(a) =
1

2
(a − f(a, b)) < 0; g(b) =

1

2
(b − f(a, b)) > 0

We claim that g(γ) is strictly monotonically increasing in
(a, b). Indeed,

d

dγ
g(γ) = 1 − 1

2
(

d

dγ
f(a, γ) +

d

dγ
f(b, γ))

Using (28), we get

d

dy
f(x, y)

< (y − x)
1√
2π

∫y

x

e−t2/2dt
e−y2/2

√
2π(Q(x) − Q(y))2

=
(y − x)e−y2/2

√
2π(Q(x) − Q(y))

=

1√
2π

∫y

x
e−y2/2dt

Q(x) − Q(y)
< 1

Hence, dg(γ)/dγ > 0 for all a < γ < b. Hence, our claim
holds. It then follows that (24) has a unique solution γ∗. Be-
cause F (α, β, γ) can be made arbitrarily large by choosing
α or β arbitrarily large, the uniqueness of (24) means that
the solution is indeed a minimizing one.
Finally, the reason for γk → γ∗ as k → ∞ is because γk+1−
γk = g(γk) which is positive when γk < γ∗ or negative
when γk > γ∗. (More thoughts needed here)
Based on Lemma 4.1, we propose the following algorithm:

Step 1 : Choose any x1 < x2 < . . . < xN−1. One good
empirical choice is to choose them to be uniformly dis-
tributed in [−2 2].

Step 2 : For i = 1 : N − 1, let a = xi−1 and b = xi+1 be
fixed and optimize γ = xi by iterating (27) until γk is
sufficiently stable.

Step 3 : Repeat Step 2 until {xi} are sufficiently stable.

Step 4 : Compute yi = f(xi−1, xi) for all i.

This algorithm has the feature that in each iteration (Step 2),
all the points of {xi} are updated. We have no proof yet
this algorithm converges or it converges to a global optimal
solution. One obvious observation is that the quantization
error variance reduces in each iteration. Simulations seem
to suggest that the convergence is very fast and the global
optimal solution is always found.

5 DYNAMIC QUANTIZATION

A dynamic quantizer uses memory, i.e., it can use the past
input-output values of the quantizer to determine how to
quantize a current input value, and thus is more complex and
potentially more powerful.
One type of dynamic quantizers uses dynamic scaling in con-
junction with a static quantizer. That is, the input signal is
pre-scaled so that its range is more suitable for quantization.
The scaling parameter is dynamically adjusted (i.e., adjusted
online). Noticeable work along this line includes [5]- [8].
n [5], it is pointed out that if a system is not excessively
unstable, by employing a quantizer with various sensitivity
a feedback strategy can be designed to bring the closed-loop
state arbitrarily close to zero for an arbitrarily long time. The
idea of quantizer with sensitivity is extended in [6] where it
is shown that there exists a dynamic adjustment of the quan-
tizer sensitivity and a quantized state feedback that asymp-
totically stabilizes the system. In the case of output feed-
back, a local (or semi-global) stabilization result is obtained.
In [9], a simple dynamic scaling method has been stud-
ied. This method employs a finite-level logarithmic quan-
tizer Q(·) in conjunction with the following scaling:

vk = g−1
k Q(gkyk). (30)

where the scaling gain gk is adjusted by

gk+1 =

⎧⎨
⎩

gkγ1, if |Q(gkyk)| = μ0,
gk/γ2, if |Q(gkyk)| = ρN−1μ0,
gk, otherwise.

(31)

with some initial g0 > 0, where γ1, γ2 ∈ (0, 1) are design
parameters. The basic idea is to scale down (resp. up) the
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Fig. 6 Closed-loop Response with a 4-bit Quantizer

next input if the current input is too large (resp. small) in
magnitude.
Note that gk+1 is determined based on when Q(gkyk) (quan-
tized information), no additional information needs to be
passed on from the transmit side to the receive side for up-
dating gk, provided both sides start with the same g0 and
there is no transmission error for the quantized information.
It is shown in [9] that it requires only a finite number of
logarithmic quantization levels to quadratically stabilize a
given linear system when the above dynamic scaling method
is used. The detailed design of the dynamic quantizer and
the controller are not discussed here.
Simulation results show that for most practical control sys-
tems, the number of quantization bits per time sample is very
moderate [9]. To demonstrate this fact, we consider the sys-
tem (10) with

A =

⎡
⎣

2.7 −2.41 0.507
1 0 0
0 1 0

⎤
⎦ , B =

⎡
⎣

1
0
0

⎤
⎦ ,

C = [1 − 0.5 0.04].

The system is unstable with two unstable open-loop poles at
1.2±i0.5 but without unstable zero and the relative degree is

1. Fig. 6 shows the state response of the closed-loop system
with a 4-bit logarithmic quantizer.

6 CONCLUSION

In this paper, we have briefly discussed a number of quan-
tization schemes for quantized feedback control and estima-
tion. This is a relatively new area of research with many
open and challenging questions. Although quantization is
a well-studied subject in signal processing and digital com-
munications, we caution that it is usually not appropriate to
directly apply techniques in these areas to control problems.
The main reason for this is that control systems involve feed-
back, which has two major implications: 1) The quantized
signal re-enters the system; 2) The input signal to the quan-
tizer is not known a priori to be bounded. Both of these im-
plications make the analysis and design of quantizers much
more difficult.
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